Highlights
- Direct formed Near-Net-Shape ingot ➔ Production process cost optimized to maximize yield
- Fine ground on request
- Broad transmission range from the UV to the IR
- OH Content ≤ 250 ppm
- Low absorption*
 Absorption at 1064 nm: ≤ 3 ppm/cm

Index homogeneity

Striation
- No striations in the primary functional direction, i.e. striae class A according to MIL-G-174-B
- In the basic version the homogeneity of Suprasil® 313 is not specified and not measured (typically less than $10 \cdot 10^{-6}$).
- Index homogeneity can be custom tailored to specifications on request at additional cost.

Index (Δn)
- No striations in the primary functional direction, i.e. striae class A according to MIL-G-174-B
- In the basic version the homogeneity of Suprasil® 313 is not specified and not measured (typically less than $10 \cdot 10^{-6}$).
- Index homogeneity can be custom tailored to specifications on request at additional cost.

Residual strain
- ≤ 5 nm/cm
- The residual strain value is specified over 90% of the diameter or edge length of a fine ground piece, or 80% of a raw formed ingot.

Bubbles and inclusions 1)

Bubble Grade
- Grade 0 (according to DIN 58927)

Bubbles according to DIN ISO 10110
- 1 / 1*0.08 for 100 cm³

Inclusions
- None

1) Bubbles and inclusions < 0.08 mm diameter are not counted.

Application range
Suprasil® 313 may be used for optics requiring high transmission and low absorption from UV to IR combined with low bubble & inclusion content. Optics may include windows, lenses, laser debris shields and mirror substrates.
Typical transmission graph

(including reflection losses) for a wall thickness of 10 mm

Decadic absorption coefficient at 200 nm

\[k_{200} \leq 0.0025 \text{ cm}^{-1} \quad (\text{typical}) \]
\[k_{200} \leq 0.005 \text{ cm}^{-1} \quad (\text{specified}) \]

Internal transmission \(T = 10^{-kd} \)
and \(d \) = wall thickness

Infrared absorption (typical)*

* OH absorption
absorption at 1064 nm\(^{1, 2}\) \(\leq 3 \text{ ppm/cm} \)

1) Kondilenko & Co-Workers, Ginzton Lab, Stanford University, private communication, 2005
2) Dr. Mühlig, IPHT Jena

* Data was taken under laboratory conditions. Actual data may differ. Customer is recommended to test under his own environmental conditions.

Germany

Heraeus Quarzglas GmbH & Co. KG
Optics
Quarzstraße 8
63450 Hanau
Phone +49 (6181) 35-62 85
Fax +49 (6181) 35-62 70
sales.hqs.optics.de@heraeus.com

USA

Heraeus Tenevo LLC
Optics
100 Heraeus Blvd.
Buford, GA 30518
Phone +1 (678) 714-4350
Fax +1 (678) 714-4355
sales.hqs.optics.us@heraeus.com

UK

Heraeus Quartz UK Ltd.
Neptune Road, Wallsend
Tyne & Wear NE28 6DD
United Kingdom
Phone +44 (191) 259 8454
Fax +44 (191) 263 8040
sales.hqs.optics.uk@heraeus.com

China

Heraeus (China) Investment Co., Ltd.
Building 5,
No. 406 Guilin Road, Xuhui District,
Shanghai 200233
Telefon +86 (21) 3357 5173
Fax +86 (21) 3357 5230
sales.hqs.optics.cn@heraeus.com

www.optics.heraeus-quarzglas.com